ERNATIONAL A LEVEL			
rther Pure Maths 2	Solution Bank	Pearson	
Chapter review 6		•	
1 a $\frac{dy}{dx} + y \tan x = e^x \cos x$			
dx			
$e^{\int dx dx} = \sec x$			
$\sec x \frac{dy}{dx} + y \sec x \tan x = e^x$			
$y \sec x = e^x + k$			
•			
$y = e^x \cos x + k \cos x$			
b at $x = \pi, y = 1$			
$e^{\pi}\cos\pi + k\cos\pi = 1$			
$k = \frac{1 - e^{\pi} \cos \pi}{1 - e^{\pi} \cos \pi}$			
$\frac{1}{\cos \pi}$			
$k = -(1 + e^{\pi})$			
Therefore:			
$y = e^x \cos x - (1 + e^\pi) \cos x$			
$=(e^{x}-e^{\pi}-1)\cos x$			

INTERNATIONAL A LEVEL		
Further Pure Maths 2 Solution Bank	Pearson	
$2 \frac{dy}{dt} = 2 \frac{dy}{dt} = $	Form	atted: Not Highlight
$\frac{2}{dx} - 3y = \sin x$	Field	Code Changed
$e^{-3\int dx} = e^{-3x}$	Comr	mented [A3]: Amended
	Field	Code Changed
$e^{-3x} - 3e^{-3x}y = \sin x$	Comr	mented [A4]: Amended
$e^{-3x}y = \int e^{-3x}\sin x dx$	Field	Code Changed
$\int e^{-3x} \sin x dx = -e^{-3x} \cos x - \int 3e^{-3x} \cos x dx$	Field	Code Changed
$-e^{-3x}\cos x - 3\left[-e^{-3x}\sin x - (3e^{-3x}\sin x)\right]$		
$=-e^{-1}\cos x - 5\left[-e^{-1}\sin x - 5e^{-1}\sin x\right]$		
$= -e^{-3x}\cos x - 3e^{-3x}\sin x - 9\int e^{-3x}\sin x dx$		
$=-\frac{1}{10}e^{-3x}(3\sin x + \cos x)$		
$\int e^{-3x} \sin x dx = -e^{-3x} \cos x - 3e^{-3x} \sin x - 9 \int e^{-3x} \sin x dx$	Field	Code Changed
$\frac{\int e^{-3x} \sin x dx = -\frac{1}{10} e^{-3x} \left(3 \sin x + \cos x\right)$		
$e^{-3x}y = -\frac{1}{10}e^{-3x}\left(3\sin x + \cos x\right) + A$	Field	Code Changed
$y = -\frac{1}{10} (3\sin x + \cos x) + Ae^{3x}$	Field	Code Changed
At x = 0, y = 0		
$-\frac{1}{4} + A = 0$	Field	Code Changed
<u>1</u>		Code Changed
$A = \frac{1}{10}$	Field	Code Changed
$y = -\frac{1}{10} (3\sin x + \cos x) + \frac{1}{10} e^{3x}$	Field	Code Changed

INTERNATIONAL A LEVEL				
Further Pure Maths 2 Solution	on Bank	Pearson		
2 dy (4 -2)				Formatted: Not Highlight
$3 \frac{dx}{dx} = x(4-y)$			\leq	Field Code Changed
$\frac{1}{1} \frac{dy}{dy} = x$			1	Field Code Changed
$4-y^2 dx$		/	/	
$\int \frac{1}{4 - v^2} \mathrm{d}y = \int x \mathrm{d}x$		/	\land	Field Code Changed
$\frac{1}{1} = \frac{1}{1}$		/	Λ	Field Code Changed
$(4-y^2)(2-y)(2+y)$		/		
$\frac{1}{(2-y)(2+y)} = \frac{A}{2-y} + \frac{B}{2+y}$			\land	Field Code Changed
$\frac{(2-y)(2-y)}{1 = A(2+y) + B(2-y)}$		/		Field Code Changed
When $y = 2$				
$4A = 1$ $A = \frac{1}{2}$			Λ	Field Code Changed
$\frac{4}{\text{When } y = -2}$		/		
4B = 1			ſ	
$B = \frac{1}{4}$			\land	Field Code Changed
Therefore:				
$\frac{1}{(2-\nu)(2+\nu)} = \frac{1}{4(2-\nu)} + \frac{1}{4(2+\nu)}$			Λ	Field Code Changed
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		/		Field Code Changed
$\int \frac{1}{4 - y^2} \mathrm{d}y = \frac{1}{4} \int \frac{1}{2 - y} \mathrm{d}y + \frac{1}{4} \int \frac{1}{2 + y} \mathrm{d}y$				
$\frac{1}{2} \int \frac{1}{1} dy + \frac{1}{2} \int \frac{1}{1} dy = \int x dx$			Λ	Field Code Changed
$4^{j}2-y^{j}4^{j}2+y^{j}$		/		
$\int \frac{1}{2 - y} dy + \int \frac{1}{2 + y} dy = 4 \int x dx$				Commented [A5]: Amended
$-\ln(2-y) + \ln(2+y) - 2x^2 + c$				Field Code Changed
(2+x)				Field Code Changed
$\ln\left(\frac{2+y}{2-y}\right) = 2x^2 + c$				
$\frac{2+y}{2} = e^{2x^2+c}$			X	Field Code Changed
$2-y^{-c}$				
$= e^{2x^2}e^c$,	/	
$= A e^{2x^2}$		/		
Let $u = Ae^{2x^2}$			\square	Field Code Changed
$\frac{2+y}{2-y} = u$			Λ	Field Code Changed
$\frac{z-y}{2+y} = u(2-y)$				Field Code Changed
2 + y = 2u - uy				Field Code Changed
uy + y = 2u - 2				Field Code Changed
$2\left(Ae^{2x^2}-1\right)$			1	Field Code Changed
$y = \frac{\sqrt{2}}{Ae^{2x^2} + 1}$		/		

INTERNATIONAL A LEVEL				
Further Pure Maths 2	Solution Bank	Pearson		
When $x = 0, y = 1$ $1 = \frac{2(A-1)}{4+1}$				Field Code Changed
A+1 $A+1=2A-2$				Field Code Changed
A=3			(Field Code Changed
$y = \frac{2(3e^{2x^2} - 1)}{3e^{2x^2} + 1}$			/	Field Code Changed
4 $\frac{d^2y}{d^2y} + \frac{dy}{dy} + y = 0$				Formatted: Not Highlight
$dx^2 dx$				Field Code Changed
$m^{-} + m + 1 = 0$ 1 + $\sqrt{1 - 4}$				Field Code Changed
$m = \frac{1}{2}$ $= \frac{-1 \pm \sqrt{-3}}{2}$ $= -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$				
$y = e^{-\frac{1}{2}x} \left(A \cos\left(\frac{\sqrt{3}}{2}x\right) + B \sin\left(\frac{\sqrt{3}}{2}x\right) \right)$	$\left(\frac{\sqrt{3}}{2}x\right)$		/	Field Code Changed
$d^2 y$ $d^2 y$			χ	Formatted: Not Highlight
$5 \frac{1}{dx^2} - 12 \frac{1}{dx} + 36y = 0$				Field Code Changed
$m^2 - 12m + 36 = 0$				Field Code Changed
(m-6)(m-6) = 0				Field Code Changed
$m = 6$ $y = (A + Bx)e^{6x}$				Field Code Changed
$6 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4 \frac{\mathrm{d}y}{\mathrm{d}x} = 0$				Formatted: Not Highlight Field Code Changed
$m^2 - 4m = 0$				Field Code Changed
m(m-4) = 0				Field Code Changed
$\overline{m} = 0$ or $m = 4$				
$v = A + Be^{4x}$				Field Code Changed

INTERNATIONAL A LEVEL			
Further Pure Mat	hs 2 Solution Bank PF	Pearson	
$d^2 y + L^2 = 0$		F	Formatted: Not Highlight
$\int \frac{dx^2}{dx^2} + k y = 0$		F	ield Code Changed
$m^2 + k^2 = 0$		F	ield Code Changed
$m^2 = -k^2$		F	ield Code Changed
$m = \pm ki$	n ha	F	ield Code Changed
$\frac{y = A\cos kx + D\sin kx}{dv}$		F	ield Code Changed
$\frac{dy}{dx} = -kA\sin kx + $	$B\cos kx$	F	ield Code Changed
When $x = 0, y = 1$	and $\frac{dy}{dx} = 1$	F	ield Code Changed
A = 1		F	ield Code Changed
kB = 1		F	ield Code Changed
$B = \frac{1}{k}$			
$u = \cos kr + \frac{1}{\sin kr}$		F	ield Code Changed
$y = \cos kx + \frac{-\sin k}{k}$	A		
$d^2 v dv dv$		F	ormatted: Not Highlight
8 $\frac{y}{dx^2} - 2\frac{y}{dx} + 10y =$	- 0	F	ield Code Changed
$m^2 - 2m + 10 = 0$		F	ield Code Changed
$2 \pm \sqrt{4 - 40}$		F	ield Code Changed
$m = \frac{2}{2}$			
$2 \pm \sqrt{-36}$			
=2			
$=1\pm 3i$			
$y = e^x (A \cos 3x +$	$B\sin 3x$)		ield Code Changed
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x} (A\cos 3x)$	$-B\sin 3x$ + $e^{x}(-3A\sin 3x + 3B\cos 3x)$	F	ield Code Changed
dx			
When $x = 0$, $y = 0$	and $\frac{dy}{dx} = 3$	F	ield Code Changed
A = 0	<u>a</u> ut	F	ield Code Changed
$\frac{A}{A+3B=3}$			ield Code Changed
B = 1			
$y = e^x \sin 3x$		F	ield Code Changed

INTERNATIONAL A LEVEL				
Further Pure Maths 2	Solution Bank	Pearson		
$d^2 y dy 12 y dy$			/	Formatted: Not Highlight
9 a $\frac{y}{dx^2} - 4\frac{y}{dx} + 13y = e^{2x}$ (1)				Field Code Changed
Let $v = ke^{2x}$				Field Code Changed
dv				Field Code Changed
$\frac{1}{\sqrt{dx}} = 2ke^{2x}$				(
$d^2 V$ $d^2 r$				Field Code Changed
$\frac{dx^2}{dx^2} = 4ke^{2x}$				
Substituting into (1) gives: $(4hc^{2x} - 4(4hc^{2x}) + 12hc^{2x} - c^{2x})$				Commonted [A6]: Amondod
4ke - 4(4ke) + 13ke = e			\leq	
$[\kappa = 1]$				Field Code Changed
Hence the particular integral is	e^{2x}		\backslash	Commented [A7]: Amended
				Field Code Changed
b $_{A}m^{2}-4m+13=0$				Commented [A8]: Amended
$\frac{4+\sqrt{(-4)^2-4(1)(13)}}{4+\sqrt{(-4)^2-4(1)(13)}}$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\nearrow	Field Code Changed
$m = \frac{1 \pm \sqrt{(-1)^2 - 1(1)(13)^2}}{2}$				Field Code Changed
$A + \sqrt{2c}^2$			1	Field Code Changed
$=\frac{4\pm\sqrt{-36}}{2}$				
2 + 2;				
$= 2 \pm 31$ Therefore the complementary fu	unction is:	/		
$v = e^{2x} \left(A \cos 3x + B \sin 3x \right)$				Field Code Changed
And the general solution is:				
$v = e^{2x} (A \cos 3x + B \sin 3x) + e^{2x}$	¢.			Commented [A9]: Amended
<i>y</i> c (1100000 + 2 01100) + 0			\leq	Field Code Changed
$d^2 v$				Formatted: Not Highlight
$10 \frac{d^2 y}{dx^2} - y = 4e^x$ (1)				Field Code Changed
Let $v = Axe^x$				Field Code Changed
dv				Field Code Changed
$\frac{dy}{dx} = Axe^{x} + Ae^{x}$				
$d^2 V$				Field Code Changed
$\frac{dy}{dx^2} = Axe^x + 2Ae^x$				
Substituting into (1) gives:				
$Axe^{x} + 2Ae^{x} - Axe^{x} = 4e^{x}$				Field Code Changed
2A = 4				
<i>A</i> = 2	_			
Hence the particular integral is $2xe$				Field Code Changed
$\frac{m^2 - 1 = 0}{m - \pm 1}$				Field Code Changed
$m - \pm 1$ Therefore the complementary funct	tion is:			
$v = Ae^{x} + Be^{-x}$				Field Code Changed
And the general solution is:				_
$v = Ae^x + Be^{-x} + 2xe^x$				Field Code Changed
				Formatted: Not Highlight
· •			-	

INTERNATIONAL A LEVEL	
Further Pure Maths 2Solution BankPearson	
11 a $\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 4y = 4e^{2x}$ (1)	Field Code Changed
$m^2 - 4m + 4 = 0$	Field Code Changed
$\sum_{m=2}^{\infty} (m-2) = 0$	Field Code Changed
Therefore the complementary function is: $y = (A + Bx)e^{2x}$	Field Code Changed
b Let $y = \lambda e^{2x}$	Field Code Changed
$\frac{dy}{dx} = 2\lambda e^{2x}$	Field Code Changed
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\lambda \mathrm{e}^{2x}$	Field Code Changed
Substituting into (1) gives: $_{4}\lambda e^{2x} - 8\lambda e^{2x} + 4\lambda e^{2x} = 4e^{2x}$	Field Code Changed
$\sqrt{0} = 4e^{2x}$	Field Code Changed
This is not possible, therefore λe^{2x} cannot be the particular integral.	Field Code Changed
Let $y = \lambda xe$	Field Code Changed
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\lambda x \mathrm{e}^{2x} + \lambda \mathrm{e}^{2x}$	Field Code Changed
$\frac{d^2 y}{dx^2} = 4\lambda x e^{2x} + 2\lambda e^{2x} + 2\lambda e^{2x}$ $= 4\lambda x e^{2x} + 4\lambda e^{2x}$	Field Code Changed
Substituting into (1) gives: $4\lambda x e^{2x} + 4\lambda e^{2x} - 4(2\lambda x e^{2x} + \lambda e^{2x}) + 4\lambda x e^{2x} = 4e^{2x}$	Field Code Changed
$4\lambda x e^{2x} + 4\lambda e^{2x} - 8\lambda x e^{2x} - 4\lambda e^{2x} + 4\lambda x e^{2x} = 4e^{2x}$	Field Code Changed
$\sqrt{0} = 4e^{2x}$	Field Code Changed
This is not possible, therefore $\lambda x e^{2x}$ cannot be the particular integral.	Field Code Changed
c Let $y = kx^2 e^{2x}$	Field Code Changed
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2kx^2\mathrm{e}^{2x} + 2kx\mathrm{e}^{2x}$	Field Code Changed
$\frac{d^2 y}{dx^2} = 4kx^2 e^{2x} + 8kx e^{2x} + 2ke^{2x}$	Commented [A10]: Amended Field Code Changed
Substituting into (1) gives:	
$4kx^{2}e^{2x} + 8kxe^{2x} + 2ke^{2x} - 4(2kx^{2}e^{2x} + 2kxe^{2x}) + 4kx^{2}e^{2x} = 4e^{2x}$	Commented [A11]: Amended
$4kx^{2}e^{2x} + 8kxe^{2x} + 2ke^{2x} - 8kx^{2}e^{2x} - 8kxe^{2x} + 4kx^{2}e^{2x} = 4e^{2x}$	Field Code Changed
	Commented [A12]: Amended
Comparing coefficients for constant terms: 2k = 4	Field Code Changed
$\kappa - 2$ —Hence the particular integral is $2x^2e^{2x}$	Commented [A13]: Amended
Aand the general solution is:	Field Code Changed
$y = (A+Bx)e^{2x} + 2x^2e^{2x}$	Commented [A14]: Amended
$= \left(A + Bx + 2x^2\right) e^{2x}$	Field Code Changed

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

RNATIONAL A LEVEL				
ther Pure Maths 2	Solution Bank	Pearson		
$d^2 v$				Formatted: Not Highlight
$12 \frac{y}{dt^2} + 4y = 5\cos 3t$ (1)				Field Code Changed
Let $y = A\cos 3t + B\sin 3t$				Field Code Changed
$\frac{\mathrm{d}y}{\mathrm{d}t} = -3A\sin 3t + 3B\cos 3t$				Field Code Changed
$\frac{d^2 y}{d^2 y} = -9A\cos 3t - 9B\sin 3t$				Field Code Changed
dt^2				
Substituting into (1) gives: $-9A\cos 3t - 9B\sin 3t + 4(A\cos 3t)$	$3t + B\sin 3t = 5\cos 3t$			Field Code Changed
$-9A\cos 3t - 9B\sin 3t + 4A\cos 3t$	$t + 4B\sin 3t = 5\cos 3t$			Field Code Changed
$-5A\cos 3t - 5B\sin 3t = 5\cos 3t$			I	Field Code Changed
Comparing coefficients:			Ċ	
For $\cos 3t$:			G	
-5A = 5				Field Code Changed
A = -1 For sin 3 <i>t</i> :				
-5B = 0				Field Code Changed
B = 0				
Hence the particular integral is	$-\cos 3t$			Field Code Changed
$m^2 + 4 = 0$				Field Code Changed
$m = \pm 2i$				
Therefore the complementary fu	unction is:			
$y = A\cos 2t + B\sin 2t$				Field Code Changed
And the general solution is:				
$y = A\cos 2t + B\sin 2t - \cos 3t$				Field Code Changed
$\frac{dy}{dy} = 24\pi i \pi 24 \pm 2R \pi \pi 24 \pm 2\pi$				Field Code Changed
$\frac{dt}{dt} = -2A\sin 2t + 2B\cos 2t + 3\sin 2t$	in 3t			
When $t = 0$, $y = 1$ and $\frac{dy}{dt} = 2$				Field Code Changed
dt				
$\frac{A-1}{B} = 1$			$-\!\!\!\!\!\!\!\!\!\!$	Lommentea [A15]: Amended
Therefore the particular solution	n is:			Field Code Changed
$y = \cos 2t + \sin 2t - \cos 3t$				Commented [A16]: Amended
►				Field Code Changed

J

TERNATIONAL A LEVEL			
urther Pure Maths 2 Solution Bank	Pearson		
			Formatted:
13 a $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4x + e^{2x}$ (1)			Field Code Ch
$\int dx dx$			Field Code Chan
$\frac{dy}{dy} = \frac{dy}{dx} + dy$			Field Code Chang
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mu + 2kx\mathrm{e}^{2x} + k\mathrm{e}^{2x}$			Field Code Chang
$d^2 v$		/ī	Field Code Chanc
$\frac{d^2 y}{dx^2} = 4kxe^{2x} + 2ke^{2x} + 2ke^{2x}$			<u> </u>
$=4kxe^{2x}+4ke^{2x}$			
Substituting into (1) gives:			
$4kxe^{2x} + 4ke^{2x} - 3(\mu + 2kxe^{2x} + ke^{2x}) + 2(\lambda + \mu x + kxe^{2x}) = 4x + e^{2x}$			Field Code Change
$4kxe^{2x} + 4ke^{2x} - 3\mu - 6kxe^{2x} - 3ke^{2x} + 2\lambda + 2\mu x + 2kxe^{2x} = 4x + e^{2x}$			Field Code Change
$ke^{2x} - 3\mu + 2\lambda + 2\mu x = 4x + e^{2x}$			Field Code Changed
Comparing coefficients:			
For e^{2x} :			Field Code Changed
k = 1			
For x:		G	
$2\mu = 4$!	Field Code Changed
$\mu = 2$			Field Code Changed
For constant terms: $-3\mu + 2\lambda = 0$		~	Field Code Charged
$\frac{-6+2\lambda=0}{-6+2\lambda=0}$			Field Code Changed
$\lambda = 3$			Field Code Changed
Hence the particular integral is $3+2x+xe^{2x}$			Field Code Changed
1			Field Code Changed
b $_{a}m^{2}-3m+2=0$			Field Code Changed
$\overline{(m-1)(m-2)} = 0$			Field Code Changed
m = 1 or $m = 2$			
Therefore the complementary function is:			
$y = Ae^{2x} + Be^{x}$			Field Code Changed
And the general solution is:			
$y = Ae^{2x} + Be^{x} + xe^{2x} + 2x + 3$			Field Code Changed

INTERNATIONAL A LEVEL	
Further Pure Maths 2 Solution Bank Pear	rson
14 a $16\frac{d^2y}{d^2y} + 8\frac{dy}{d^2y} + 5y = 5x + 23$ (1)	Commented [A17]: Amended
$\int dx^2 dx = \int $	Formatted: Not Highlight
Let $y = Ax + B$	Field Code Changed
$\left \frac{\mathrm{d}y}{\mathrm{d}z}-A\right $	Commented [A18]: Amended
	Field Code Changed
$\left \frac{d^2y}{d^2}\right = 0$	Commented [A19]: Amended
dx ⁻ Substituting into (1) gives:	Field Code Changed
8A+5(Ax+B) = 5x+23	Commented [A20]: Amended
8A + 5Ax + 5B = 5x + 23	Field Code Changed
Comparing coefficients:	Commented [A21]: Amended
For x:	Field Code Changed
$SA = 3 \Longrightarrow A = 1$	Commented [A22]: Amended
$\frac{A-1}{2}$	Field Code Changed
For constant terms:	Commented [A23]: Amended
$8A + 5B = 23 \Longrightarrow B = 3$	Field Code Changed
B-3	Commented [A24]: Amended
Hence the particular integral is $x+3$	Field Code Changed
$-16m^2 + 8m + 5 = 0$	Commented [A25]: Amended
$-8 \pm \sqrt{8^2 - 4(16)(5)}$	Field Code Changed
$m = \frac{-1}{2(16)}$	Field Code Changed
	Field Code Changed
$=\frac{-8\pm\sqrt{-256}}{-256}$	Field Code Changed
32	
$=\frac{-8\pm161}{222}$	
32	
$=-\frac{1}{4}\pm\frac{1}{2}i$	
Therefore the complementary function is:	/
$y = e^{-\frac{1}{4}x} \left(A\cos\left(\frac{1}{2}x\right) + B\sin\left(\frac{1}{2}x\right) \right)$	Field Code Changed
	/
And the general solution is: $\frac{1}{2}\left(\begin{array}{c}1\\1\end{array}\right)$	Field Code Changed
$y = e^{-\frac{4}{4}x} \left(A\cos\left(\frac{1}{2}x\right) + B\sin\left(\frac{1}{2}x\right) \right) + x + 3$	Piero Code Changeo
$\frac{dy}{dt} = e^{-\frac{1}{4}x} \left(-\frac{1}{4}A\sin\left(\frac{1}{-x}\right) + \frac{1}{-B}\cos\left(\frac{1}{-x}\right) \right) - \frac{1}{-e^{-\frac{1}{4}x}} \left(A\cos\left(\frac{1}{-x}\right) + B\sin\left(\frac{1}{-x}\right) \right) + 1$	Field Code Changed
dx (2 (2) 2 (2)) 4 (2) (2))	/
When $x = 0$, $y = 3$ and $\frac{dy}{dx} = 3$	Field Code Changed
A + 3 = 3	
A = 0	
$\frac{1}{2}B - \frac{1}{4}A + 1 = 3$	Field Code Changed
R = 4	
Therefore the particular solution is:	
1	

 $\ensuremath{\textcircled{O}}$ Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

INTERNATIONAL A LEVEL	
Further Pure Maths 2 Solution Bank Pearson	
$y = 4e^{-\frac{1}{4}x}\sin\left(\frac{1}{2}x\right) + x + 3$	Field Code Changed
b As $x \to \infty$, $4e^{\frac{1}{4}} \sin\left(\frac{1}{2}x\right) \to 0$ so $y \to x+3$	Field Code Changed
$d^2 y dy$	Commented [A26]: Question number
$15 \frac{d^{2}y}{dr^{2}} - \frac{dy}{dr} - 6y = 3\sin 3x - 2\cos 3x (1)$	Formatted: Indent: Left: 0 cm
Let $A \cos 3x + B \sin 3x$	Field Code Changed
$\frac{dy}{dt} = -34\sin 3x + 3B\cos 3x$	Field Code Changed
dx	Field Code Changed
$\frac{d^2y}{dt} = -9A\cos 3x - 9B\sin 3x$	Field Code Changed
$\frac{dx^2}{dx^2}$ Substituting into (1) gives:	
$-9A\cos 3x - 9B\sin 3x + 3A\sin 3x - 3B\cos 3x - 6A\cos 3x - 6B\sin 3x = 3\sin 3x - 2\cos 3x$	Field Code Changed
$-15A\cos 3x - 15B\sin 3x + 3A\sin 3x - 3B\cos 3x = 3\sin 3x - 2\cos 3x$	Field Code Changed
$\underline{-\cos 3x(-15A-3B)} + \sin 3x(3A-15B) = 3\sin 3x - 2\cos 3x$	Field Code Changed
Comparing coefficients: For cos 3x:	
-15A - 3B = -2 (1)	Formatted: Indent: Left: 0 cm
For sin 3x:	Field Code Changed
3A - 15B = 3 (2)	Field Code Changed
Adding (1) and $5 \times$ (2) gives: 78R - 13	
-76D - 15	
$B = -\frac{1}{6}$	Field Code Changed
	Commented [A27]: Amended
$-A=\overline{6}$	Field Code Changed
Hence the particular integral is $\frac{1}{\cos 3x} - \frac{1}{\sin 3x}$	Field Code Changed
$m^2 - m - 6 = 0$	Field Code Changed
(m+2)(m-3)=0	Field Code Changed
m = -2 or $m = 3Therefore the complementary function is:$	
$v = Ae^{3x} + Be^{-2x}$	Field Code Changed
And the general solution is:	
$y = Ae^{3x} + Be^{-2x} + \frac{1}{6}\cos 3x - \frac{1}{6}\sin 3x$	Field Code Changed
If $y(x)$ remains finite as $x \to \infty$ then $A = 0$	
Therefore:	
$v = Be^{-2x} + \frac{1}{-\cos 3x} - \frac{1}{-\sin 3x}$	Field Code Changed
$\frac{6}{2} \frac{6}{6} \frac{6}{6}$ When $x = 0, y = 1$	
$1 = B + \frac{1}{2}$	Commented [A28]: Amended
6	Field Code Changed
$B = \frac{5}{6}$	Field Code Changed
Therefore the particular solution is:	

INTERNATIONAL A LEVEL			
Further Pure Maths 2	Solution Bank	Pearson	
$y = \frac{1}{6} \left(5e^{-2x} + \cos 3x - \sin 3x \right)$			Field Code Changed
I			 Formatted: Not Highlight

urther Pure Maths 2Solution BankPearson16 a $\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = \cos 4t$, $t \ge 0$ (1)Field CorLet $x = A\cos 4t + B\sin 4t$ Field Cor $\frac{dx}{dt} = -4.A\sin 4t + 4B\cos 4t$ Field Cor $\frac{d^2x}{dt} = -16A\cos 4t - 16B\sin 4t$ Field Cor $\frac{d^2x}{dt^2} = -16A\cos 4t - 16B\sin 4t$ Field Cor $\frac{d^2x}{dt^2} = -16A\cos 4t - 16B\sin 4t + 4B\cos 4t$) + $16(A\cos 4t + B\sin 4t) = \cos 4t$ Field Cor $-16A\cos 4t - 16B\sin 4t + 8(-4A\sin 4t + 4B\cos 4t) + 16(A\cos 4t + B\sin 4t) = \cos 4t$ Field Cor $-16A\cos 4t - 16B\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t$ Field Cor $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Field Cor $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Field Cor $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Field Cor $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Field Cor $-32A \sin 4t + 32B\cos 4t = \cos 4t$ Field Cor $-32A = 0$ Field Cor $A = 0$ Field CorHence the particular integral is $\frac{1}{32}\sin 4t$ Field Cor $\frac{m^2 + 8m + 16 = 0}{(m + 4)(m + 4) = 0}$ Field Cor $\frac{m^2 + 8m + 16 = 0}{(m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m + 4) = 0}$ Field Cor $\frac{m - 4}{1 + Core (m + 4)(m +$	TERNATIONAL A LEVEL	
16 a $\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 16x = \cos 4t, t \ge 0$ (1) Let $x = A \cos 4t + B \sin 4t$ $\frac{dx}{dt} = -4A \sin 4t + 4B \cos 4t$ $\frac{d^2x}{dt^2} = -16A \cos 4t - 16B \sin 4t$ Substituting into (1) gives: $-16A \cos 4t - 16B \sin 4t + 8(-4A \sin 4t + 4B \cos 4t) + 16(A \cos 4t + B \sin 4t) = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-32A \sin 4t + 32B \cos 4t = \cos 4t$ Comparing coefficients: For $\cos 4t$: $\frac{32B = 1}{52}$ For $\sin 4t$: $\frac{-32A = 0}{A = 0}$ Hence the particular integral is $\frac{1}{32} \sin 4t$ $\frac{1}{32} \sin 4t$ Field Code C $\frac{m^2 + 8m + 16 = 0}{(m + 4)(m + 4) = 0}$ m = -4 Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ And the general solution is: $x = (A + Bt)e^{-4t}$ And the general solution is: $x = (A + Bt)e^{-4t}$ Field Code C	urther Pure Maths 2 Solution Bank Pearso	on
16a $\frac{dt^2}{dt^2} + s \frac{d}{dt} + 10.1 - cos 4t$, $t \ge 0$ (1) Let $x = Acos 4t + B \sin 4t$ $\frac{dt}{dt} = -4A \sin 4t + 4B \cos 4t$ $\frac{dt^2}{dt^2} = -16A \cos 4t - 16B \sin 4t$ Substituting into (1) gives: $-16A \cos 4t - 16B \sin 4t + 8(-4A \sin 4t + 4B \cos 4t) + 16(A \cos 4t + B \sin 4t) = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-32A \sin 4t + 32B \cos 4t = \cos 4t$ Comparing coefficients: For $\cos 4t$: 32B = 1 $B = \frac{1}{32}$ For $\sin 4t$: -32A = 0 Hence the particular integral is $\frac{1}{32} \sin 4t$ Hence the particular integral is $\frac{1}{32} \sin 4t$ $m^2 + 8m + 16 = 0$ (m+4)(m+4) = 0 m = -4 Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ And the general solution is: $x = (A + Bt)e^{-4t} + \frac{1}{-} \sin 4t$	$d^2x + g^2x + g^2x + 16x - \cos(4t + 50)$ (1)	Field Coo
Let $x = A \cos 4t + B \sin 4t$ $\frac{dx}{dt} = -4A \sin 4t + 4B \cos 4t$ $\frac{d^2x}{dt^2} = -16A \cos 4t - 16B \sin 4t$ Substituting into (1) gives: $-16A \cos 4t - 16B \sin 4t + 8(-4A \sin 4t + 4B \cos 4t) + 16(A \cos 4t + B \sin 4t) = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ $-32A \sin 4t + 32B \cos 4t = \cos 4t$ Field Code Change For $\cos 4t$: 32B = 1 $B = \frac{1}{32}$ For $\sin 4t$: -32A = 0 Hence the particular integral is $\frac{1}{32} \sin 4t$ Hence the particular integral is $\frac{1}{32} \sin 4t$ $\frac{m^2 + 8m + 16 = 0}{(m + 4)(m + 4) = 0}$ m = -4 Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ And the general solution is: $x = (A + Bt)e^{-4t} + \frac{1}{-} \sin 4t$ Field Code Change Field Code Ch	$10a \frac{dt^2}{dt^2} + 6\frac{dt}{dt} + 10x = \cos 4t, t \ge 0 $ (1)	
$\frac{dx}{dt} = -4A\sin 4t + 4B\cos 4t$ Field Code Change $\frac{d^2x}{dt^2} = -16A\cos 4t - 16B\sin 4t$ Substituting into (1) gives: $-16A\cos 4t - 16B\sin 4t + 8(-4A\sin 4t + 4B\cos 4t) + 16(A\cos 4t + B\sin 4t) = \cos 4t$ Field Code Change $-16A\cos 4t - 16B\sin 4t + 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t$ Field Code Change $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Field Code Change Field Code Cha	$\operatorname{Let}_{A} x = A\cos 4t + B\sin 4t$	Field Coo
dt Field Code Change d^2x dt^2 $-16A\cos 4t - 16B\sin 4t$ Field Code ChangeSubstituting into (1) gives: $-16A\cos 4t - 16B\sin 4t + 8(-4A\sin 4t + 4B\cos 4t) + 16(A\cos 4t + B\sin 4t) = \cos 4t$ Field Code Change $-16A\cos 4t - 16B\sin 4t + 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t$ Field Code Change $-16A\cos 4t - 16B\sin 4t - 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t$ Field Code Change $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Field Code ChangeComparing coefficients: For cos 4t: $32B = 1$ Field Code Change $B = \frac{1}{32}$ Field Code ChangeFor sin 4t: $-32A = 0$ Field Code Change $A = 0$ Field Code ChangeHence the particular integral is $\frac{1}{32}\sin 4t$ Field Code Change $m^2 + 8m + 16 = 0$ $(m+4)(m+4) = 0$ Field Code Change $m = -4$ Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ Field Code Change $x = (A+Bt)e^{-4t}$ Field Code changeField Code Change $m = -4$ Field Code ChangeField Code ChangeTherefore the complementary function is: $x = (A+Bt)e^{-4t}$ Field Code Change $x = (A+Bt)e^{-4t}$ Field Code ChangeField Code Change <td>$\frac{\mathrm{d}x}{\mathrm{d}t} = -4A\sin 4t + 4B\cos 4t$</td> <td>Field Coo</td>	$\frac{\mathrm{d}x}{\mathrm{d}t} = -4A\sin 4t + 4B\cos 4t$	Field Coo
$\frac{d^{2}x}{dt^{2}} = -16A\cos 4t - 16B\sin 4t$ Substituting into (1) gives: $-16A\cos 4t - 16B\sin 4t + 8(-4A\sin 4t + 4B\cos 4t) + 16(A\cos 4t + B\sin 4t) = \cos 4t$ Field Code Change $-16A\cos 4t - 16B\sin 4t - 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t$ Field Code Change $-32A\sin 4t + 32B\cos 4t = \cos 4t$ Comparing coefficients: For cos 4t: 32B = 1 Field Code Change $B = \frac{1}{32}$ For sin 4t: $-32A = 0$ Hence the particular integral is $\frac{1}{32}\sin 4t$ Field Code Change $m^{2} + 8m + 16 = 0$ Field Code Change (m + 4)(m + 4) = 0 Field Code Change (m + 4)(m + 4) = 0 Field Code Change Field Code Ch	$\frac{dt}{dt}$	
df'Substituting into (1) gives: $-16A \cos 4t - 16B \sin 4t + 8 (-4A \sin 4t + 4B \cos 4t) + 16 (A \cos 4t + B \sin 4t) = \cos 4t$ Field Code Change $-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t$ Field Code Change $-32A \sin 4t + 32B \cos 4t = \cos 4t$ Field Code Change $-32A \sin 4t + 32B \cos 4t = \cos 4t$ Field Code ChangeComparing coefficients: For cos 4t: $32B = 1$ Field Code Change $B = \frac{1}{32}$ Field Code Change $B = \frac{1}{32}$ Field Code ChangeFor sin 4t: $-32A = 0$ Field Code Change $A = 0$ Field Code ChangeHence the particular integral is $\frac{1}{32} \sin 4t$ Field Code Change $m^2 + 8m + 16 = 0$ Field Code Change $(m+4)(m+4) = 0$ Field Code Change $m = -4$ Field Code ChangeTherefore the complementary function is: $x = (A + Bt) e^{-4t}$ Field Code ChangeAnd the general solution is: $x = (A + Bt) e^{-4t} + \frac{1}{-}\sin 4t$ Field Code Change	$\frac{d^2x}{dt^2} = -16A\cos 4t - 16B\sin 4t$	Field Coc
Field Code Change $ \begin{array}{c} -16A\cos 4t - 16B\sin 4t + 8(-4A\sin 4t + 4B\cos 4t) + 16(A\cos 4t + B\sin 4t) = \cos 4t \\ -16A\cos 4t - 16B\sin 4t - 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t \\ -16A\cos 4t - 16B\sin 4t - 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t \\ -32A\sin 4t + 32B\cos 4t = \cos 4t \\ -32B\sin 4t + 32B\cos 4t = \cos 4t \\ \hline Field Code Change \\ Field Code Chan$	<u>at</u> Substituting into (1) gives:	
$\frac{-16A \cos 4t - 16B \sin 4t - 32A \sin 4t + 32B \cos 4t + 16A \cos 4t + 16B \sin 4t = \cos 4t}{-32A \sin 4t + 32B \cos 4t = \cos 4t}$ Field Code Change Field Code Change $\frac{-32A \sin 4t + 32B \cos 4t = \cos 4t}{-32B \cos 4t = \cos 4t}$ Field Code Change $\frac{B = \frac{1}{32}}{\frac{1}{32}}$ Field Code Change For sin 4t: $\frac{-32A = 0}{A = 0}$ Hence the particular integral is $\frac{1}{32} \sin 4t$ Field Code Change $\frac{m^2 + 8m + 16 = 0}{(m + 4)(m + 4) = 0}$ Field Code Change $\frac{m = -4}{Therefore the complementary function is:}$ $x = (A + Bt)e^{-4t}$ Field Code Change Field Code Change	$-16A\cos 4t - 16B\sin 4t + 8(-4A\sin 4t + 4B\cos 4t) + 16(A\cos 4t + B\sin 4t) = \cos 4t$	Field Coo
$\frac{-32 A \sin 4t + 32B \cos 4t = \cos 4t}{\text{Comparing coefficients:}}$ For $\cos 4t$: $\frac{32B = 1}{32}$ For $\sin 4t$: $\frac{-32A = 0}{A = 0}$ Hence the particular integral is $\frac{1}{32} \sin 4t$ $\frac{m^2 + 8m + 16 = 0}{(m + 4)(m + 4) = 0}$ Field Code Change $\frac{m = -4}{1}$ Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ Field Code Change Field Code Change	$-16A\cos 4t - 16B\sin 4t - 32A\sin 4t + 32B\cos 4t + 16A\cos 4t + 16B\sin 4t = \cos 4t$	Field Coo
Comparing coefficients: For $\cos 4t$: 32B = 1 $B = \frac{1}{32}$ For $\sin 4t$: -32A = 0 Hence the particular integral is $\frac{1}{32} \sin 4t$ $m^2 + 8m + 16 = 0$ (m + 4)(m + 4) = 0 m = -4 Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ And the general solution is: $x = (A + Bt)e^{-4t} + \frac{1}{-}\sin 4t$ Field Code Change Field Code Change	$-32A\sin 4t + 32B\cos 4t = \cos 4t$	Field Cor
For $\cos 4t$: 32B = 1 $B = \frac{1}{32}$ For $\sin 4t$: -32A = 0 A = 0 Hence the particular integral is $\frac{1}{32} \sin 4t$ $\frac{m^2 + 8m + 16 = 0}{(m+4)(m+4) = 0}$ m = -4 Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{-}\sin 4t$ Field Code Change Field Code Change	Comparing coefficients:	
Field Code Change $ \begin{array}{c} B = \frac{1}{32} \\ For \sin 4t; \\ -32.4 = 0 \\ Hence the particular integral is \frac{1}{32} \sin 4t \begin{array}{c} m^2 + 8m + 16 = 0 \\ (m+4)(m+4) = 0 \\ m = -4 \\ Therefore the complementary function is: \\ x = (A+Bt)e^{-4t} \\ And the general solution is: \\ x = (A+Bt)e^{-4t} + \frac{1}{-}\sin 4t \end{array} Field Code Change Fi$	For cos 4t:	
$B = \frac{1}{32}$ Field Code ChangeFor sin 4t: $-32.4 = 0$ $A = 0$ Field Code ChangeHence the particular integral is $\frac{1}{32} \sin 4t$ Field Code Change $m^2 + 8m + 16 = 0$ Field Code Change $(m+4)(m+4) = 0$ Field Code Change $m = -4$ Field Code ChangeTherefore the complementary function is: $x = (A+Bt)e^{-4t}$ And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code ChangeField Code Change	32B = 1	Field Coo
For sin 4t: -32A = 0 Hence the particular integral is $\frac{1}{32} \sin 4t$ $m^2 + 8m + 16 = 0$ (m+4)(m+4) = 0 m = -4 Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change Field Code Change	$B = \frac{1}{22}$	Field Coo
Field Code Change A = 0 Hence the particular integral is $\frac{1}{32} \sin 4t$ $m^2 + 8m + 16 = 0$ (m+4)(m+4) = 0 m = -4 Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change Field Code Change	<u>32</u> For sin At	
$A = 0$ Hence the particular integral is $\frac{1}{32} \sin 4t$ $m^2 + 8m + 16 = 0$ $(m+4)(m+4) = 0$ $m = -4$ Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ Field Code Change Field Code Change	-32.4 = 0	Field Cor
Hence the particular integral is $\frac{1}{32} \sin 4t$ $\frac{m^2 + 8m + 16 = 0}{(m+4)(m+4) = 0}$ m = -4 Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change Field Code Change Field Code Change Field Code Change Field Code Change Field Code Change	A = 0	ried Cot
Field Code Change $m^2 + 8m + 16 = 0$ (m+4)(m+4) = 0 m = -4 Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change Field Code Change Field Code Change Field Code Change	Hence the particular integral is $\frac{1}{2} \sin 4t$	Field Coo
$m^2 + 8m + 16 = 0$ Field Code Change $(m+4)(m+4) = 0$ Field Code Change $m = -4$ Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ Field Code ChangeAnd the general solution is:Field Code Change $x = (A + Bt)e^{-4t}$ Field Code Change	$\frac{11}{32} = \frac{11}{32} = 11$	
(m+4)(m+4) = 0 $m = -4$ Therefore the complementary function is: $x = (A+Bt)e^{-4t}$ Field Code Change And the general solution is: $x = (A+Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change	$m^2 + 8m + 16 = 0$	Field Coo
m = -4 Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ Field Code Change And the general solution is: $x = (A + Bt)e^{-4t} + \frac{1}{\sin 4t}$ Field Code Change	(m+4)(m+4) = 0	Field Coo
Therefore the complementary function is: $x = (A + Bt)e^{-4t}$ And the general solution is: $x = (A + Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change	m = -4	
$\frac{x = (A + Bt)e^{-4t}}{\text{And the general solution is:}}$ $x = (A + Bt)e^{-4t} + \frac{1}{2}\sin 4t$ Field Code Change	Therefore the complementary function is:	
And the general solution is: $x = (A + Bt)e^{-4t} + \frac{1}{1}\sin 4t$ Field Code Change	$x = (A + Bt)e^{-4t}$	Field Coo
$x = (A + Bt)e^{-4t} + \frac{1}{-1}\sin 4t$ Field Code Change	And the general solution is:	
	$x = (A + Bt)e^{-4t} + \frac{1}{-1}\sin 4t$	Field Coo

INTERNA	TIONAL A LEVEL				
Furthe	er Pure Maths 2	Solution Bank	Pearson		
16 h	$r = (4 + Bt)e^{-4t} + \frac{1}{2}\sin 4t$				Formatted: Not
100	$x = (A + Di)C + \frac{1}{32}SIII + i$			4	Field Code Chan
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -4\left(A + Bt\right)\mathrm{e}^{-4t} + B\mathrm{e}^{-4t}$	$t^{t} + \frac{1}{8}\cos 4t$		1	Field Code Chang
	When $t = 0$, $x = \frac{1}{2}$ and $\frac{dy}{dt} = \frac{1}{2}$	= 0		1	Field Code Chang
	2 dt	~		4	Field Code Change
	$A = \frac{1}{2}$			1	Field Code Change
	$-4A + B + \frac{1}{2} = 0$				Field Code Change
	8				
	$B = \frac{15}{8}$				Field Code Change
	Therefore the particular solu	ution is:			
	$x = \frac{1}{2}(4+15t)e^{-4t} + \frac{1}{22}\sin 4t$	4 <i>t</i>		1	Field Code Change
	8 32				
0	As $t \to \infty$ the e^{-4t} dominate	es the first term so $\frac{1}{2}(4+15t)e^{-4t}$	0 leaving.	1	Field Code Change
t		$\frac{1}{8}(4+15t)c$	o leaving.	4	Field Code Change
	$x = \frac{1}{22} \sin 4t$ which is an os	scillation.			Field Code Changed

INTERNATIONAL A LEVEL				
Further Pure Maths 2	Solution Bank	P	Pearson	
17 b But $y = 1$ when $x = 1$				
$\therefore 1 = A + B - \frac{3}{4} \Longrightarrow A + B = 0$	⁷ / ₄ (1)			
$\frac{dy}{dx} = -\frac{A}{x^2} - \frac{2B}{x^3} + \frac{1}{2x}$				
When $x = 1$, $\frac{dy}{dx} = 1$				
$\therefore 1 = -A - 2B + \frac{1}{2} \Longrightarrow A + 2A$	$B = -\frac{1}{2}$ (2)			
Solve the simultaneous equa	tions (1) and (2) to give $B = -\frac{9}{4}$	and $A = 4$		
\therefore The equation of the solution	ion curve described is $y = \frac{4}{x} - \frac{9}{4x}$	$\frac{1}{x^2} + \frac{1}{2} \ln x - \frac{3}{4}$		

INTERNATIONAL A LEVEL		
Further Pure Maths 2 Solution Bank	Pearson	
18 $z = \sin x$ \therefore $\frac{dz}{dz} = \cos x$ and $\frac{dy}{dz} = \frac{dy}{dz} \times \cos x$	/	Field Code Changed
dx = dx = dx = dz		
$\therefore \frac{d^2 y}{dx^2} = -\frac{dy}{dz}\sin x + \cos x \frac{d^2 y}{dz^2} \times \frac{dz}{dx}$	/	Field Code Changed
$= -\frac{dy}{dz}\sin x + \cos^2 x \frac{d^2 y}{dz^2}$		
$\therefore \frac{d^2 y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = \cos^2 x e^{\sin x} \dagger$	/	Field Code Changed
$\Rightarrow \cos^2 x \frac{d^2 y}{dx^2} - \sin x \frac{dy}{dx} + \tan x \cos x \frac{dy}{dx} + y \cos^2 x = \cos^2 x e^z$		
$\Rightarrow \frac{d^2 y}{d^2 + y} = e^z *$		
]	
The auxiliary equation is $m^{-} + 1 = 0 \implies m = \pm 1$		
\therefore The c.f. is $y = A \cos z + B \sin z$		Field Code Changed
The p.i. is $y = \lambda e^z \Rightarrow \frac{dy}{dz} = \lambda e^z$ and $\frac{d^2y}{dz^2} = \lambda e^z$		Field Code Changed
Substitute in * to give		
$2\lambda e^{z} = e^{z} \Longrightarrow \lambda = \frac{1}{2}$		Field Code Changed
\therefore The general solution of \star is $y = A \cos z + B \sin z + \frac{1}{2}e^{z}$		Field Code Changed
The original equation \dagger has solution		Field Code Changed
$y = A\cos(\sin x) + B\sin(\sin x) + \frac{1}{2}e^{\sin x}$		Field Code Changed
But $y = 1$ when $x = 0$		Field Code Changed
$\therefore 1 = A + \frac{1}{2} \Longrightarrow A = \frac{1}{2}$		Field Code Changed
$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos x (-A\sin(\sin x)) + \cos x (B\cos(\sin x)) + \frac{1}{2}\cos x \mathrm{e}^{\sin x}$		Field Code Changed
As $\frac{dy}{dx} = 3$ when $x = 0$		Field Code Changed
$\therefore 3 = B + \frac{1}{2} \Longrightarrow B = \frac{5}{2}$		Field Code Changed
$\therefore y = \frac{1}{2}\cos(\sin x) + \frac{5}{2}\sin(\sin x) + \frac{1}{2}e^{\sin x}$	/	

NTERNATIONAL A LEVEL		
urther Pure Maths 2	Solution Bank	Pearson
Challenge		
1 a Given that $z = y^2$, and so $y =$	$= z^{\frac{1}{2}}$ and $\frac{dy}{dx} = \frac{1}{2} z^{-\frac{1}{2}} \frac{dz}{dx}$	
The equation $2(1+x^2) \frac{dy}{dt} + 2$	$2xv = \frac{1}{2}$ becomes	
	<i>y y</i>	
$2(1+x^2) \times \frac{1}{2}z^{-\frac{1}{2}}\frac{dz}{dx} + 2xz^{\frac{1}{2}} = x$	z ⁻¹ /2	
Multiply the equation by $\frac{z^2}{1+z}$	$\frac{1}{2}$	
Then $\frac{dz}{dx} + \frac{2x}{1+x^2}z = \frac{1}{1+x^2}$		
The integrating factor is $e^{\int \frac{2\pi}{1+x}}$	$\int_{x^2}^{x^2} dx = e^{\ln(1+x^2)} = 1 + x^2$	
$\therefore (1+x^2)\frac{\mathrm{d}z}{\mathrm{d}x} + 2xz = 1$		
$\therefore \frac{\mathrm{d}}{\mathrm{d}x}[(1+x^2)z] = 1$		
$\therefore \qquad (1+x^2)z = \int 1 \mathrm{d}x$ $= x + c$		
$\therefore \qquad \qquad z = \frac{x+c}{(1+x^2)}$)	
As $y = z^{\frac{1}{2}}$, $y = \sqrt{\frac{x+c}{(1+x^2)^2}}$		
b When $x = 0, y = 2$ $\therefore 2 =$	$=\sqrt{c} \Rightarrow c = 4$	
	$\sqrt{x+4}$	

INTERNATIONAL A LEVEL				
Further Pure Maths 2	Solution Bank	Pearson		
dy dy du				Formatted: Not Highlight
2 a $\frac{1}{dx} = \frac{1}{du} \frac{1}{dx}$				Field Code Changed
$d^2y d(dy du)$				Commented [A29]: Amended
$\frac{1}{\mathrm{d}x^2} = \frac{1}{\mathrm{d}x} \left(\frac{1}{\mathrm{d}u} \frac{1}{\mathrm{d}x} \right)$				Field Code Changed
$dy d^2 u = du (d^2 y du)$				
$= \frac{dy}{du}\frac{du}{dx^2} + \frac{du}{dx}\left(\frac{dy}{du^2}\frac{du}{dx}\right)$				
$= \frac{\mathrm{d}y}{\mathrm{d}u}\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 \frac{\mathrm{d}^2 y}{\mathrm{d}u^2}$		/		
Let $x = e^u$, therefore:				
$u = \ln x$			C	
$\frac{\mathrm{d}u}{\mathrm{d}u} = \frac{1}{\mathrm{d}u}$				Field Code Changed
dx x	1			
$= e^{u}$		/	,	
$\frac{d^2 u}{d^2 u^2} = -x^{-2}$				Field Code Changed
dx^2				
$= -e^{2\pi}$		/	/	
$d^2 y$ dy			£	Field Code Changed
$x^2 \frac{dy}{dx^2} + 4x \frac{dy}{dx} + 2y = \ln x$				
The transformed equation is:		/		
$\int dy (dx) = d^2y$	[dv]]		T	Field Code Changed
$e^{2u} \left[\frac{dy}{du} \left(-e^{-2u} \right) + e^{-2u} \frac{d'y}{du^2} \right] + e^{-2u} \frac{d'y}{du^2} = e^{-2u} \left[\frac{d'y}{du^2} \right] + e^{-2u} \frac{d'y}{du^2} = e^{-2u} \left[\frac{d'y}{du^2} \right] + e^{-2u} \frac{d'y}{du^2} = e^{-2u} \left[\frac{d'y}{du^2} \right] + e^{-2u} \frac{d'y}{du^2} = e^{-2u} $	$4e^{u}\left\lfloor\frac{dy}{du}e^{-u}\right\rfloor+2y=u$	/		
$-\frac{\mathrm{d}y}{\mathrm{d}y} + \frac{\mathrm{d}^2y}{\mathrm{d}y} + 4\frac{\mathrm{d}y}{\mathrm{d}y} + 2y = u$				Field Code Changed
$du du^2 du^2$		/	/	
$\frac{\mathrm{d}^2 y}{\mathrm{d} y} + 3\frac{\mathrm{d} y}{\mathrm{d} y} + 2y = y \qquad (1)$				Field Code Changed
$\frac{du^2}{du} \frac{du^2}{du} \frac{du}{du} $		/	/	
Let $y = Au + B$		<		Commented [A30]: Amended
$\left[\frac{\mathrm{d}y}{\mathrm{d}x}=A\right]$				Field Code Changed
du				Commented [A31]: Amended
$\left \frac{d^2y}{d^2}\right = 0$				Field Code Changed
du^2			\sim	Commented [A32]: Amended
Substituting into (1) gives: 3A+2(Au+B) = u				Field Code Changed
			(Field Code Changed
Comparing coefficients:				
For <i>u</i> :				Commented [A33]: Amended
2A=1				Field Code Changed
$A = \frac{1}{2}$				Commented [A34]: Amended
				Field Code Changed
For constant terms:				Commented [A35]: Amended
3A + 2B = 0				Field Code Changed
$\frac{3}{2} + 2B = 0$				Commented [A36]: Amended
2				Field Code Changed
$B = -\frac{3}{4}$				Commented [A37]: Amended
4		/		Field Code Changed
I I			C	-

 $\ensuremath{\textcircled{O}}$ Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

INTERNATIONAL A LEVEL					
Further Pure Maths 2	Solution Bank	Pearson			
Hence the particular integra	1 is $\frac{1}{2}u - \frac{3}{4}$		Field	d Code Changed	
$\frac{d^2 y}{du^2} + 3\frac{dy}{du} + 2y = u$	<u> </u>		Field	d Code Changed	
$\frac{1}{m^2 + 3m + 2} = 0$ $(m+1)(m+2) = 0$			Field	d Code Changed	
m = -1 or m = -2	ry function is:		Field		
$y = Ae^{-u} + Be^{-2u}$			Field	d Code Changed	
$y = Ae^{-u} + Be^{-2u} + \frac{1}{2}u - \frac{3}{4}$			Field	d Code Changed	
Therefore: $y = \frac{A}{x} + \frac{B}{x^2} + \frac{1}{2} \ln x - \frac{3}{4}$			Field	d Code Changed	
2 b $y = \frac{A}{A} + \frac{B}{A} + \frac{1}{2} \ln x - \frac{3}{2}$			Forn	natted: Not Highlight	
$\frac{dy}{dt} = -\frac{A}{2} - \frac{2B}{2} + \frac{1}{2}$			Field	d Code Changed d Code Changed	
$\frac{dx}{dx} = \frac{x^2}{x^3} = \frac{2x}{2x}$ When $x = 1$, $y = 1$ and $\frac{dy}{1} = \frac{1}{2x}$:1		Field	d Code Changed	
$A + B - \frac{3}{4} = 1$			Field	d Code Changed	
$A + B = \frac{7}{4}$ (2)			Field	d Code Changed	
$-A - 2B + \frac{1}{2} = 1$			Field	d Code Changed	
$-A - 2B = \frac{1}{2}$ (3)			Field	d Code Changed	
Adding (2) and (3) gives: $B = -\frac{9}{2}$			Field	d Code Changed	
$\frac{4}{A+B=\frac{7}{4}}$			Field	d Code Changed	
$\frac{4}{A - \frac{9}{A} = \frac{7}{A}}$			Field	d Code Changed	
A = 4 Therefore the particular solution	ution is:				
$y = \frac{4}{x} + \frac{9}{4x^2} + \frac{1}{2}\ln x - \frac{3}{4}$			Field	d Code Changed	
3 Substitute $u = \frac{dy}{dx}$ so equation	becomes		Field	d Code Changed	

 $\ensuremath{\textcircled{O}}$ Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

INTERNATIONAL A LEVEL Further Pure Maths 2 Solution Bank $\frac{du}{dx} = u^2$ $\Rightarrow \int \frac{du}{u^2} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$	Anternational A Level Solution Bank Pearson $\frac{du}{dx} = u^2$ $\Rightarrow \int \frac{du}{u^2} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{x + B}$				
Further Pure Maths 2 Solution Bank $\frac{du}{dx} = u^2$ $\Rightarrow \int \frac{du}{u^2} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$	Further Pure Maths 2 Solution Bank $\frac{du}{dx} = u^2$ $\Rightarrow \int \frac{du}{u^2} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{x + B}$	TERNATIONAL A LEVEL			
$\frac{du}{dx} = u^{2}$ $\Rightarrow \int \frac{du}{u^{2}} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$	$\frac{du}{dx} = u^{2}$ $\Rightarrow \int \frac{du}{u^{2}} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{x + B}$	urther Pure Maths 2	Solution Bank	Pearson	
$\Rightarrow \int \frac{1}{u^2} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$	$\Rightarrow \int \frac{dx}{u^2} = \int dx$ $\Rightarrow -\frac{1}{u} = x + B$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{x + B}$	$\frac{\mathrm{d}u}{\mathrm{d}x} = u^2$			
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x+B}$	$\Rightarrow \int \frac{\mathrm{d}x}{u^2} = \int \mathrm{d}x$ $\Rightarrow -\frac{1}{u} = x + B$			